
Software Defined Radio Bluetooth Low Energy
Communication System with ThingSpeak

Integration
Fivos Kavassalis*, Faith Kurtz*, Jonathan Lee*

*Worcester Polytechnic Institute, Worcester, MA 01609 USA
Email: fikavassalis@wpi.edu, fkurtz@wpi.edu, jlee4@wpi.edu

Abstract—When creating an end-to-end radio system,
packet error rate (PER) is vital in determining the
viability of that radio system. This analysis is also
commonly applied onto Software Defined Radio (SDR)
system designs like the one that we try to recreate. Our
project uses two ADALM-PLUTOs to create an
end-to-end software defined radio system that uses the
Bluetooth Low Energy (BLE) standard. Our design uses
BLE to transmit and receive data through related data
channels and determines the system’s PER. The decoded
data is uploaded to ThingSpeak and statistics are stored
in the cloud for later analysis.

Keywords—
Bluetooth Low Energy, Software Defined Radio, Packet
Error Rate, ADALM-Pluto

I. INTRODUCTION

Bluetooth Low Energy (BLE) is a wireless personal area
network technology that allows the transmission of a
suitable amount of data to devices, such as smartphones, that
are high on energy consumption and the interaction of
mobile devices with generic sensors measuring physical
properties to provide users an improved customer experience
that “senses” their cyber-physical environment. The big
advantage of the BLE technology is its high degree of
energy efficiency. Consequently, it is cost saving and has
better functioning performance for mobile devices and that it
can be connected to a large number and variety of mobile
devices and operating systems, thus allowing interaction on
multiple platforms and cross-device use cases.

Although BLE is part of the same specification as
Bluetooth, in reality it is not treated as the same technology
since BLE is not reverse-compatible with Bluetooth [1].
BLE, as a new technology, is mostly centered around IoT
applications where small amounts of data need to be
transmitted at lower speeds. It is designed as a short-range
transmission technology, thus it can be used to send data 2-5

m in reality, although this distance can be extended up to 30
m albeit with higher energy consumption. In addition, the
BLE’s upper limit in terms of its data rate is 2 Mbps
although in practice a lower rate is expected.

Another motivation that we had for this project was that
our project could become the prototype or proof of concept
to a system that was designed to use a multitude of SDRs to
send information to a main information hub that could
record and store all that information for later processing.
One way that our system could be used is helping monitor
moisture levels within fertile lands or irrigated farms. By
having a system such as this constantly collecting data from
those farms, they could be watered whenever it was
necessary and help to optimize the water usage in those
farms and help the surrounding areas conserve water. This
task would be especially important and helpful within
communities where water is scarce and an essential
commodity.

In this paper, we detail the process of creating a system
that collects data as strings and converts that information
into bits that are coded, modulated and manipulated to create
a transmission signal to send over BLE to another BLE
receiver that should be within range of a wireless router so
that the data could be decoded, demodulated, and reformed
into bits that can be converted back into strings of
information for uploading into a central hub where that
information can be stored and used for a variety of purposes.
This system is designed to be especially general so that it
can be used for more than just the previously mentioned
situation. Since this design is made to allow various
transmitters to send data that will be read and uploaded to
the cloud, it could also use it to pick up other messages or
data that the user can preset the system to read themselves.
This design will also allow the system to have flexibility in
its usages and make full use of its wide area data collection
network properties.

mailto:jlee4@wpi.edu


II. BACKGROUND

A BLE device can be divided into three sections: the
application, the host, and the controller. The focus of this
project is primarily on the controller section, which contains
the Physical layer and Link layer of the communication
stack.

A. Physical Layer Specifications

BLE uses the 2.4GHz to 2.4835GHz band [2]. This band
is evenly split into 40 channels, 3 of which are used for
advertising and the rest of which are used for data [2]. Each
channel has a bandwidth of 2MHz [3]. The band is divided
into these channels so that frequency hopping spread
spectrum (FHSS) can be used, which decreases narrowband
interference. This project will be implemented on the
ADALM-Pluto, which supports a frequency range of 325
MHz to 3.8 GHz and a channel bandwidth of up to 20MHz
[4].

BLE uses Gaussian Frequency Shift Keying (GFSK) with
a modulation index of 0.5 [2]. BLE version 5 has the option
of either 1Mbit/s or 2Mbit/s [3].

A BLE transmitter must have a transmit power of at least
0.01 mW (-20 dBm), but no more than 100 mW (20 dBm)
[3]. The receiver must have a minimum sensitivity of -70
dBm for a BER of 0.1% [3]. These requirements are within
the capabilities of the Pluto SDR.

B. Link Layer Specifications

Each functioning BLE device must have a Bluetooth
device address, a unique 48 bit number assigned to a
Bluetooth device which differentiates it from other devices
[2]. There are two types of these addresses: public device
addresses , which are fixed and registered with the IEEE
Registration Authority, and random device addresses which
are not [2].

When BLE devices are not connected to each other, they
operate in advertiser and scanner roles. An advertiser device
sends advertiser packets, and a scanner device scans for
these packets [2]. The packets can be used to discover
potential slave devices or to broadcast small amounts of data
for applications which do not require an established
connection [2]. Each advertising packet includes header
information (including the Bluetooth device address of the
sender) and 31 bytes of advertising data [2]. Since the
advertiser and scanner are not synchronized, advertising
packets are only received by a scanner when they happen to
be on the same channel [2].

Once the BLE devices establish a connection, they
assume master and slave roles. A master device initiates and
manages connections with slave devices [2]. A slave device
follows the master device’s timing [2]. When a connection is
created between a master and slave device, the master device
sends a connection request packet which includes the
frequency hop increment used for FHSS and 3 connection
parameters: connection interval, slave latency, and
connection supervision timeout [2].When BLE devices are
connected, they use data packets to communicate (rather
than advertising packets). The usable data payload of a data
packet is 216 bits, though this number is often reduced as
additional protocols are added to the communication system
[2].

When operating on the BLE standard, each received
packet is checked against a 24-bit CRC regardless of the role
of the BLE device (master, slave, etc.) [2]. When there is a
failure, the receiving device will request a retransmission
[2]. An interesting feature of this system is that there is no
limit to retransmissions -- the cycle repeats until the packet
is sent successfully [2].

Figure 1 below shows a summary of the establishment
and use of a connection to send a single packet between two
BLE devices. This is borrowed from [3].

Figure 1: Overview of BLE Communication System

III. FINAL PROPOSED DESIGN

To create a complete BLE system from info source to
info sink, we will be using two ADALM-Plutos, two
computers for Matlab computations and configuration, and a
microphone. As seen in figure 2, we first receive
information in the form of a string from the microphone.
This string is processed by our Matlab program to produce a
signal for the transmitter to transmit. Once the signal is
generated and the transmitter is configured, the signal is sent



to the ADALM-Pluto to begin transmitting. After travelling
through the channel, which is about a foot of air in our case,
the signal is recorded by our receiver. The recorded
transmission is then processed in order to determine the
information payload’s data bits for converting into usable
information. After we determine the usable information,
whether it be “hello world” or a floating point number, we
upload that information up to ThingSpeak and store it within
the database.

Figure 2: Block Diagram of the Overall Design’s Data
Transmission Path

IV. METHODOLOGY

Our BLE Implementation can be split in four sections:
the sensor interface, the transmitter, the receiver and the
ThingSpeak integration. In this part of our report we are
going to analytically explain how we executed each section.

A. Sensor Interface

We incorporated a sensor in our system in order to
transmit messages with input data from that sensor. More
specifically, we connected the LM393 microphone to the
ESP32-PICO-KIT microcontroller. We were receiving the
microphone’s sensor data in 100 ms intervals using the
microcontroller’s analog pin. Each message that we
eventually wanted to transmit consisted of 10 microphone
readings. This message was written as a string to the serial
port periodically, with the baud rate set to 9600 bps, once 10
new microphone samples were stored. Furthermore, the
ESP32 microcontroller has a 12-bit ADC so the values that
we expected to read from the microphone were in the range
of 0 to 4095. However, our LM393 microphone has a
potentiometer from which we could alter its sensitivity.
Since it was set to low sensitivity, the values that we were
receiving were closer to 0 than to 4095 and therefore the
sound excitation had to be larger in order for the readings to
change substantially. Figures 3 and 4 below display the
environment, figure 5 shows the flowchart of our sensor

interface. Figure 6 displays the messages written from the
microcontroller to the serial port.

Figure 3: Top Level Environment of the Sensor Interface

Figure 4: Connection of LM393 Microphone with
ESP32-PICO-KIT Microcontroller



Figure 5: Flowchart Displaying the Functionality of
Microcontroller

Figure 6: Messages Written to Serial Port by Microcontroller

B. Transmitter

The transmitter SDR’s functionality was implemented in
Matlab. We performed repetitive transmission of messages
by implementing an infinite loop. We initially checked
whether the ‘Communications Toolbox Library for the
Bluetooth Protocol’ is installed. If not, an error is thrown. If
it is installed, we configured and generated an advertising
channel protocol data unit (PDU). Then, our program
listened to the serial port, where a string of fifty characters is
transmitted since each microphone reading is of type double
and therefore has two digits after the decimal point. Once
we stored the 10 microphone sensor values as a string to our
Matlab program, we converted the string to hex and we
reshaped it into a one dimensional array. Afterwards, we
transmitted the message over BLE in that form through the
data channel by generating the data channel PDU and
inserting that array as an input argument. Subsequently, we
initialized the parameters required for generating the
baseband two IQ waveforms for the advertising and the data
channel message bits respectively. We set the physical layer
mode to uncoded 1 Mbps (LE1M), samples per symbol to 8,
channel index to 37 and access address length to 32.
Furthermore, we defined the access address value in hex and
in binary and we set the symbol rate to 1e6. Once all of the
initializations were done, we generated the baseband IQ
waveform for the advertising channel and the data channel
message bits (one for each channel). Then, we initialized the
parameters required for the signal source by setting the
center frequency to 2.402 GHz, the frame lengths to their
corresponding IQ waveform lengths, the number of frames
to 1e5 and the transmitter front end sample rate to 8 Msps.
We set the signal source to ‘ADALM-PLUTO’ and we
checked whether the hardware support package existed. If it
did not, then an error was thrown. Otherwise, the PLUTO
that was connected to the computer was discovered, we
initialized it as a transmitter system object and we
transferred the baseband data to it. Finally, we released the
signal sink objects after transferring both IQ waveforms and
the program is started all over again. A flowchart of the
transmitter is shown in figure 7.



Figure 7: Transmitter Flowchart

C. Receiver

In order to receive the signal that we are sending from the
transmitter SDR, we needed to configure another SDR for
receiving bluetooth transmission, create the algorithms to

pull out the bits from the encoded signal, and convert those
bits into the information that we are trying to recieve. A
flowchart that outlines the entire receiver process is shown
in figure 8 below.

Figure 8: Receiver Flowchart



Step 1 - Pluto Receiver:
Within the ADALM-Pluto SDR, we needed to configure the
receiver antenna to sense the incoming signal with the
parameters within table 1.

Sampling Frequency: 1 MegaBits per Second

Center Frequency: 2.402 GigaHertz

Baseband Sample Rate: 8 MegaSamples per Second

Samples per Frame: 100 KiloSamples per Frame

Table 1: Receiver Configuration

Within Matlab, this can be done by altering the data within
sdrrx’s data structure.

Step 2 - Automatic Gain Control:
Automatic gain control(AGC) simply regulates the signal to
have a maximum power or magnitude. In our situation, we
were regulating the signal to have a maximum power of 2.
We also reduce the amount of gain that the signal can
receive so that the signal does not start clipping and
distorting. To run AGC, we use the comm.AGC function
provided by Mathworks to create an object that will apply
AGC to the signal.

Step 3 - Remove DC Offset:
After receiving the signal amplitudes, there is a DC offset
due to the fact that we cannot receive a “negative” signal.
Thus, we convert the signal from amplitudes from 0 to 2 into
amplitudes from -1 to 1.

Step 4 - Frequency Compensation:
Now we have a signal that can be synchronized using the
comm.CoarseFrequencyCompensator function from the
communications toolbox. With this premade frequency
compensator provided by Mathworks, we will be able to
remove any frequency offsets that we may have picked up
during transmission.

Step 5 - Gaussian Pulse matching:
After correcting the signal for frequency offsets, we need to
perform Gaussian Pulse matching. We perform this task by
convoluting the compensated signal with “bleparam.h” from
the BLE configuration data structure and return the central
part of the convolution which should be the length of the
originally entered signal.

Step 6 - Timing Synchronization:
Within our function, we perform timing synchronization at
the same time as we search for preambles. This is executed
using the comm.PreambleDetector function provided by
Mathworks’ Communications toolbox. Once we find
preambles, we use those “detections” to synchronize time
within our custom helper function.

Step 7 - GMSK Demodulation:
Within the helper function as well, we demodulate the data
by using the ble.internal.gmskdemod function which will
demodulate the applied signal using the Gaussian minimum
shift keying demodulation with the preset parameters from
the BLE configuration data structure.

Step 8 - DeWhitening:
Also within the Helper function that we made is a process to
dewhiten the data. Both the transmitter and receiver code use
the same internal Matlab function for whitening and
dewhitening. The Matlab “whiten” function whitens or
dewhitens a binary input using specified 127-bit whitening
sequence, circular array shifting, and the generator
polynomial x^7+x^4+1.

Step 9 - CRC Check:
Within the Helper Function we also pull out the exact bits
that we need to manipulate into usable information. We
extracted those bits by using the
bleLLDataChannelPDUDecode function by Mathworks to
first decode the information into bits and then output the
data payload into the “LLpayload” output.

Step 10 - PER:
Once we have extracted the data bits, we can compare the
original data bits with the extracted ones in order to
determine our packet error rate which is the ratio of incorrect
packets of total packets sent. When testing, we received a
packet error rate that ranged from seven to fifteen percent
error rate.

D. ThingSpeak Integration

In order to upload the data to ThingSpeak, we first had to
convert it into an appropriate format. The data bit recovery
function outputs a hexadecimal string. We used various
Matlab functions and loops to convert that data into a
column vector of decimal measurements which could then
be uploaded to ThingSpeak.



Data can be easily uploaded to ThingSpeak using
Matlab’s thingSpeakWrite function. A channel ID and write
key can be obtained when the channel is created on the
ThingSpeak website.

V. EXPERIMENTAL RESULTS

In this section, we will discuss our experimental results
as well as the challenges we encountered.

A. Results

In our final implementation, we were transmitting floating
point values taken from our microphone. Figures 9, 10, and
11 show the received spectra at different points

Figure 9: Received Spectrum When No Packets Are Being
Transmitted

Figure 10: Received Spectrum When Packets Are Being
Transmitted, Calculated PER = 0.125523

Figure 11: Received Spectrum When Packets Are Being
Transmitted, Calculated PER = 0.098522.

As shown in figures 10 and 11 above, the spectrum of the
received signal varies with time. Both of these spectra were
obtained for the same payload value being transmitted:
‘16.0012.0012.0010.0016.0016.0010.0016.0012.0016.00’
For further discussion of the observed PER values, see
section VI.

We successfully decoded the transmitted message at the
receiver whenever a packet was detected. Our receiver code
in Matlab displayed the decoded message in the command
window as follows:

'Received Message is: 16.0012.0012.00...'

We did not notice any occurrences of incorrectly decoded
bits or symbols, only of total packet loss most likely due to
timing issues.

Finally, after all data has been recovered and formatted, it
was uploaded to ThingSpeak. Figure 12 shows the
ThingSpeak graph of data. The graph includes 80 data
points, with 10 data points uploaded every 15 minutes.

Figure 12: ThingSpeak Data Graph



B. Issues and Challenges

Originally, the provided helper function for recovering
the Physical Bits from the BLE transmission was meant for
only pulling out the physical bits for an advertising channel
since the decoder that we implemented within it was only for
a BLE advertising channel. Thus, our group needed to look
through the original helper function and replace this decoder
with a data channel decoder and alter some of the peripheral
code to accommodate this change.

One of the more confusing changes that we needed to
implement was setting the CRC to the same CRC that the
transmitter was using. This issue was just a problem of
understanding the sample code, but with time and Kuldeep,
we figured out what to do.

Another issue that we had was that the data was no longer
being stored in the same way that we thought. Originally, the
Advertising data decoder sent everything to the “cfgLLAdv”
output so we thought that it would work the same with the
data channel decoder, but we were wrong since the new
decoder required another output to store the bits that were
extracted. Additionally, that output needs to be initialised or
else nothing will be stored.

VI. DISCUSSION

When working on this project, our group also had to
consider time constraints and as a result, was left with a few
areas that we knew we could improve upon. These are the
areas that we believe that we could improve: transmission
packets design, receiving packets without a CRC, and packet
error rate.

A. Transmission Packet Design

During transmission, we are sending 10 values that we read
from our sensor. We could improve this by finding a way to
send those 10 bits one by one instead of 10 at a time. We
believe that the issue we were getting when trying to
transmit in this setup was due to the fact that Matlab could
not keep up with the processes that needed to occur to send
the data as previously specified. To fix this issue, we would
need to use a different program that would be able to handle
these processes in real time or we would need to continue
debugging to find out if there was some form of hardware
issue that we missed.

B. Receiving Packets Without a CRC

Another part of our project that we could improve is how we
were receiving data. Sometimes an error where the array
lengths did not match occurred after transmission. We
believe that this is due to white noise producing a signal
similar to our preamble. However, the following data that
the system processes would not have a CRC resulting in the
decoder not removing the CRC bits at the end and the array
lengths being mismatched after the decoder.

C. Packet Error Rate

We initially thought that the variation in the packet error
rate was due to different data measurements being
transmitted. However, to test this theory, we transmitted the
same data in multiple “identical” experiments, and obtained
different PER values each time. For this reason, we believe
the PER variation was due to timing variation when running
the system on Matlab, and also potentially due to outside
interference since the BLE band is so commonly used.

VII. CONCLUSION

Through this project, we were able to learn how to
implement a BLE data channel and send data that can be
reconverted back into characters or floating point numbers
for storage within ThingSpeak. We enjoyed this project and
have learned about BLE in depth as we were trying to
implement it. We were also surprised at how poor Matlab is
at trying to keep up with real-time systems and how difficult
it is to implement an entire standard that we use on a nearly
daily basis. Overall, this was a fun and interesting project
with many sources of information to learn from and we
enjoyed the development and learning process we followed
when trying to generate this system.

REFERENCES

[1] Honkanen, M., Lappetelainen, A., Kivekas, K. et al
(2004) Low end extension for Bluetooth 2004 IEEE
Radio and Wireless Conference 19-22 September 2014
IEEE pp 199-202.

[2] K. Townsend et al, Getting Started with Bluetooth Low
Energy. 2014.

[3] Silicon Labs, “UG103.14: Bluetooth®LE
Fundamentals,” [Online]. Available:
https://www.silabs.com/documents/public/user-guides/ug
103-14-fundamentals-ble.pdf. [Accessed: Jan. 30, 2020].

[4] Analog Devices, “RF Agile Transceiver” AD9363
datasheet, 2016.


